Profiling and debugging

Profiling

One of the main reasons people don’t use ABMs is because they can be very slow. While “vanilla Starsim” is quite fast (10,000 agents running for 100 timesteps should take about a second), custom modules, if not properly written, can be quite slow.

The first step of fixing a slow module is to identify the problem. To do this, Starsim includes some built-in profiling tools.

Let’s look at a simple simulation:

import sciris as sc
import starsim as ss
sc.options(jupyter=True)

pars = dict(
    start = '2000-01-01',
    stop = '2020-01-01',
    diseases = 'sis',
    networks = 'random'
)

# Profile sim
sim = ss.Sim(pars)
prof = sim.profile()
Initializing sim with 10000 agents

Profiling 15 function(s):

 <bound method Sim.run of Sim(n=10000; 2000.01.01—2020.01.01; networks=randomnet; diseases=sis)>

<bound method Sim.start_step of Sim(n=10000; 2000.01.01—2020.01.01; networks=randomnet; diseases=sis [...]

<function Module.start_step at 0x7f9c9e5478a0>

<function Module.start_step at 0x7f9c9e5478a0>

<bound method SIS.step_state of sis(pars=[init_prev, beta, dur_inf, waning, imm_boost, _n_initial_ca [...]

<bound method DynamicNetwork.step of randomnet(n_edges=50000; pars=[n_contacts, dur, beta]; states=[ [...]

<bound method Infection.step of sis(pars=[init_prev, beta, dur_inf, waning, imm_boost, _n_initial_ca [...]

<bound method People.step_die of People(n=10000; age=30.0±17.3)>

<bound method People.update_results of People(n=10000; age=30.0±17.3)>

<bound method Network.update_results of randomnet(n_edges=50000; pars=[n_contacts, dur, beta]; state [...]

<function SIS.update_results at 0x7f9c9ded8f60>

<function Module.finish_step at 0x7f9c9e547ab0>

<function Module.finish_step at 0x7f9c9e547ab0>

<bound method People.finish_step of People(n=10000; age=30.0±17.3)>

<bound method Sim.finish_step of Sim(n=10000; 2000.01.01—2020.01.01; networks=randomnet; diseases=si [...] 




  Running 2000.01.01 ( 0/21) (0.00 s)  ———————————————————— 5%


  Running 2010.01.01 (10/21) (1.01 s)  ••••••••••—————————— 52%


  Running 2020.01.01 (20/21) (1.13 s)  •••••••••••••••••••• 100%



Elapsed time: 1.16 s





———————————————————————————————————————————————————————

Profile of networks.py:None: 0.000543662 s (0.0470365%)

———————————————————————————————————————————————————————



Total time: 0.000543662 s

File: /home/runner/work/starsim/starsim/starsim/networks.py

Function: Network.update_results at line 256



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   256                                               def update_results(self):

   257                                                   """ Store the number of edges in the network """

   258        21     512750.0  24416.7     94.3          self.results['n_edges'][self.ti] = len(self)

   259        21      30912.0   1472.0      5.7          return







—————————————————————————————————————————————————————

Profile of people.py:None_2: 0.00136984 s (0.118516%)

—————————————————————————————————————————————————————



Total time: 0.00136984 s

File: /home/runner/work/starsim/starsim/starsim/people.py

Function: People.finish_step at line 422



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   422                                               def finish_step(self):

   423        21    1001267.0  47679.4     73.1          self.remove_dead()

   424        21     355525.0  16929.8     26.0          self.update_post()

   425        21      13043.0    621.1      1.0          return







———————————————————————————————————————————————————

Profile of people.py:None: 0.00268903 s (0.232649%)

———————————————————————————————————————————————————



Total time: 0.00268903 s

File: /home/runner/work/starsim/starsim/starsim/people.py

Function: People.step_die at line 384



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   384                                               def step_die(self):

   385                                                   """ Carry out any deaths or removals that took place this timestep """

   386        21    2240725.0 106701.2     83.3          death_uids = ((self.ti_dead <= self.sim.ti) | (self.ti_removed <= self.sim.ti)).uids

   387        21     121737.0   5797.0      4.5          self.alive[death_uids] = False  # Whilst not dead, removed agents should not be included in alive totals

   388                                           

   389                                                   # Execute deaths that took place this timestep (i.e., changing the `alive` state of the agents). This is executed

   390                                                   # before analyzers have run so that analyzers are able to inspect and record outcomes for agents that died this timestep

   391        42     220604.0   5252.5      8.2          for disease in self.sim.diseases():

   392        21      37217.0   1772.2      1.4              if isinstance(disease, ss.Disease):

   393        21      54636.0   2601.7      2.0                  disease.step_die(death_uids)

   394                                           

   395        21      14107.0    671.8      0.5          return death_uids







—————————————————————————————————————————————————————

Profile of people.py:None_1: 0.00440807 s (0.381377%)

—————————————————————————————————————————————————————



Total time: 0.00440807 s

File: /home/runner/work/starsim/starsim/starsim/people.py

Function: People.update_results at line 413



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   413                                               def update_results(self):

   414        21      44655.0   2126.4      1.0          ti = self.sim.ti

   415        21      19496.0    928.4      0.4          res = self.sim.results

   416        21     931164.0  44341.1     21.1          res.n_alive[ti] = np.count_nonzero(self.alive)

   417        21    1169227.0  55677.5     26.5          res.new_deaths[ti] = np.count_nonzero(self.ti_dead == ti)

   418        21    1029616.0  49029.3     23.4          res.new_emigrants[ti] = np.count_nonzero(self.ti_removed == ti)

   419        21    1197904.0  57043.0     27.2          res.cum_deaths[ti] = np.sum(res.new_deaths[:ti]) # TODO: inefficient to compute the cumulative sum on every timestep!

   420        21      16004.0    762.1      0.4          return







———————————————————————————————————————————————————————

Profile of diseases.py:None_2: 0.00456052 s (0.394566%)

———————————————————————————————————————————————————————



Total time: 0.00456052 s

File: /home/runner/work/starsim/starsim/starsim/diseases.py

Function: SIS.update_results at line 670



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   670                                               @ss.required()

   671                                               def update_results(self):

   672                                                   """ Store the population immunity (susceptibility) """

   673        21    3252883.0 154899.2     71.3          super().update_results()

   674        21    1292684.0  61556.4     28.3          self.results['rel_sus'][self.ti] = self.rel_sus.mean()

   675        21      14951.0    712.0      0.3          return







————————————————————————————————————————————————

Profile of sim.py:None: 0.00689206 s (0.596286%)

————————————————————————————————————————————————



Total time: 0.00689206 s

File: /home/runner/work/starsim/starsim/starsim/sim.py

Function: Sim.start_step at line 306



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   306                                               def start_step(self):

   307                                                   """ Start the step -- only print progress; all actual changes happen in the modules """

   308                                           

   309                                                   # Set the time and if we have reached the end of the simulation, then do nothing

   310        21      19976.0    951.2      0.3          if self.complete:

   311                                                       errormsg = 'Simulation already complete (call sim.init() to re-run)'

   312                                                       raise AlreadyRunError(errormsg)

   313                                           

   314                                                   # Print out progress if needed

   315        21    4692358.0 223445.6     68.1          self.elapsed = self.timer.toc(output=True)

   316        21      26392.0   1256.8      0.4          if self.verbose: # Print progress

   317        21      16129.0    768.0      0.2              t = self.t

   318        21     329145.0  15673.6      4.8              simlabel = f'"{self.label}": ' if self.label else ''

   319        21    1158410.0  55162.4     16.8              string = f'  Running {simlabel}{t.now("str")} ({t.ti:2.0f}/{t.npts}) ({self.elapsed:0.2f} s) '

   320        21      21783.0   1037.3      0.3              if self.verbose >= 1:

   321                                                           sc.heading(string)

   322        21      17544.0    835.4      0.3              elif self.verbose > 0:

   323        21      32360.0   1541.0      0.5                  if not (t.ti % int(1.0 / self.verbose)):

   324         3     561451.0 187150.3      8.1                      sc.progressbar(t.ti + 1, t.npts, label=string, length=20, newline=True)

   325        21      16510.0    786.2      0.2          return







———————————————————————————————————————————————————————

Profile of diseases.py:None_1: 0.00707561 s (0.612167%)

———————————————————————————————————————————————————————



Total time: 0.00707561 s

File: /home/runner/work/starsim/starsim/starsim/diseases.py

Function: SIS.step_state at line 631



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   631                                               def step_state(self):

   632                                                   """ Progress infectious -> recovered """

   633        21    2338818.0 111372.3     33.1          recovered = (self.infected & (self.ti_recovered <= self.ti)).uids

   634        21     128038.0   6097.0      1.8          self.infected[recovered] = False

   635        21      81453.0   3878.7      1.2          self.susceptible[recovered] = True

   636        21    4511793.0 214847.3     63.8          self.update_immunity()

   637        21      15511.0    738.6      0.2          return







——————————————————————————————————————————————————

Profile of modules.py:None: 0.0154357 s (1.33546%)

——————————————————————————————————————————————————



Total time: 0.0154357 s

File: /home/runner/work/starsim/starsim/starsim/modules.py

Function: Module.start_step at line 673



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   673                                               @required()

   674                                               def start_step(self):

   675                                                   """ Tasks to perform at the beginning of the step """

   676        42      49890.0   1187.9      0.3          if self.finalized:

   677                                                       errormsg = f'The module {self._debug_name} has already been run. Did you mean to copy it before running it?'

   678                                                       raise RuntimeError(errormsg)

   679        42      50983.0   1213.9      0.3          if self.dists is not None: # Will be None if no distributions are defined

   680        42   15295746.0 364184.4     99.1              self.dists.jump_dt() # Advance random number generators forward for calls on this step

   681        42      39112.0    931.2      0.3          return







————————————————————————————————————————————————————

Profile of networks.py:None_1: 0.072403 s (6.26415%)

————————————————————————————————————————————————————



Total time: 0.072403 s

File: /home/runner/work/starsim/starsim/starsim/networks.py

Function: DynamicNetwork.step at line 413



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   413                                               def step(self):

   414        21   17671123.0 841482.0     24.4          self.end_pairs()

   415        21   54712193.0 2.61e+06     75.6          self.add_pairs()

   416        21      19664.0    936.4      0.0          return







—————————————————————————————————————————————————

Profile of diseases.py:None: 1.02071 s (88.3096%)

—————————————————————————————————————————————————



Total time: 1.02071 s

File: /home/runner/work/starsim/starsim/starsim/diseases.py

Function: Infection.step at line 208



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   208                                               def step(self):

   209                                                   """

   210                                                   Perform key infection updates, including infection and setting prognoses

   211                                                   """

   212                                                   # Create new cases

   213        21 1001171720.0 4.77e+07     98.1          new_cases, sources, networks = self.infect() # TODO: store outputs in self or use objdict rather than 3 returns

   214                                           

   215                                                   # Set prognoses

   216        21      28112.0   1338.7      0.0          if len(new_cases):

   217        21   19491256.0 928155.0      1.9              self.set_outcomes(new_cases, sources)

   218                                           

   219        21      22112.0   1053.0      0.0          return new_cases, sources, networks



Figure(672x480)

This graph (which is a shortcut to sim.loop.plot_cpu()) shows us how much time each step in the integration loop takes. We can get line-by-line detail of where each function is taking time, though:

prof.disp(maxentries=5)




————————————————————————————————————————————————

Profile of sim.py:None: 0.00689206 s (0.596286%)

————————————————————————————————————————————————



Total time: 0.00689206 s

File: /home/runner/work/starsim/starsim/starsim/sim.py

Function: Sim.start_step at line 306



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   306                                               def start_step(self):

   307                                                   """ Start the step -- only print progress; all actual changes happen in the modules """

   308                                           

   309                                                   # Set the time and if we have reached the end of the simulation, then do nothing

   310        21      19976.0    951.2      0.3          if self.complete:

   311                                                       errormsg = 'Simulation already complete (call sim.init() to re-run)'

   312                                                       raise AlreadyRunError(errormsg)

   313                                           

   314                                                   # Print out progress if needed

   315        21    4692358.0 223445.6     68.1          self.elapsed = self.timer.toc(output=True)

   316        21      26392.0   1256.8      0.4          if self.verbose: # Print progress

   317        21      16129.0    768.0      0.2              t = self.t

   318        21     329145.0  15673.6      4.8              simlabel = f'"{self.label}": ' if self.label else ''

   319        21    1158410.0  55162.4     16.8              string = f'  Running {simlabel}{t.now("str")} ({t.ti:2.0f}/{t.npts}) ({self.elapsed:0.2f} s) '

   320        21      21783.0   1037.3      0.3              if self.verbose >= 1:

   321                                                           sc.heading(string)

   322        21      17544.0    835.4      0.3              elif self.verbose > 0:

   323        21      32360.0   1541.0      0.5                  if not (t.ti % int(1.0 / self.verbose)):

   324         3     561451.0 187150.3      8.1                      sc.progressbar(t.ti + 1, t.npts, label=string, length=20, newline=True)

   325        21      16510.0    786.2      0.2          return







———————————————————————————————————————————————————————

Profile of diseases.py:None_1: 0.00707561 s (0.612167%)

———————————————————————————————————————————————————————



Total time: 0.00707561 s

File: /home/runner/work/starsim/starsim/starsim/diseases.py

Function: SIS.step_state at line 631



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   631                                               def step_state(self):

   632                                                   """ Progress infectious -> recovered """

   633        21    2338818.0 111372.3     33.1          recovered = (self.infected & (self.ti_recovered <= self.ti)).uids

   634        21     128038.0   6097.0      1.8          self.infected[recovered] = False

   635        21      81453.0   3878.7      1.2          self.susceptible[recovered] = True

   636        21    4511793.0 214847.3     63.8          self.update_immunity()

   637        21      15511.0    738.6      0.2          return







——————————————————————————————————————————————————

Profile of modules.py:None: 0.0154357 s (1.33546%)

——————————————————————————————————————————————————



Total time: 0.0154357 s

File: /home/runner/work/starsim/starsim/starsim/modules.py

Function: Module.start_step at line 673



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   673                                               @required()

   674                                               def start_step(self):

   675                                                   """ Tasks to perform at the beginning of the step """

   676        42      49890.0   1187.9      0.3          if self.finalized:

   677                                                       errormsg = f'The module {self._debug_name} has already been run. Did you mean to copy it before running it?'

   678                                                       raise RuntimeError(errormsg)

   679        42      50983.0   1213.9      0.3          if self.dists is not None: # Will be None if no distributions are defined

   680        42   15295746.0 364184.4     99.1              self.dists.jump_dt() # Advance random number generators forward for calls on this step

   681        42      39112.0    931.2      0.3          return







————————————————————————————————————————————————————

Profile of networks.py:None_1: 0.072403 s (6.26415%)

————————————————————————————————————————————————————



Total time: 0.072403 s

File: /home/runner/work/starsim/starsim/starsim/networks.py

Function: DynamicNetwork.step at line 413



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   413                                               def step(self):

   414        21   17671123.0 841482.0     24.4          self.end_pairs()

   415        21   54712193.0 2.61e+06     75.6          self.add_pairs()

   416        21      19664.0    936.4      0.0          return







—————————————————————————————————————————————————

Profile of diseases.py:None: 1.02071 s (88.3096%)

—————————————————————————————————————————————————



Total time: 1.02071 s

File: /home/runner/work/starsim/starsim/starsim/diseases.py

Function: Infection.step at line 208



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   208                                               def step(self):

   209                                                   """

   210                                                   Perform key infection updates, including infection and setting prognoses

   211                                                   """

   212                                                   # Create new cases

   213        21 1001171720.0 4.77e+07     98.1          new_cases, sources, networks = self.infect() # TODO: store outputs in self or use objdict rather than 3 returns

   214                                           

   215                                                   # Set prognoses

   216        21      28112.0   1338.7      0.0          if len(new_cases):

   217        21   19491256.0 928155.0      1.9              self.set_outcomes(new_cases, sources)

   218                                           

   219        21      22112.0   1053.0      0.0          return new_cases, sources, networks


(Note that the names of the functions here refer to the actual functions called, which may not match the graph above. That’s because, for example, ss.SIS does not define its own step() method, but instead inherits step() from Infection. In the graph, this is shown as sis.step(), but is listed in the table as Infection.step(). This is because it’s referring to the actual code being run, so refers to where those lines of code exist in the codebase; there is no code corresponding to SIS.step() since it’s just inherited from Infection.step().)

If you want more detail, you can also define custom functions to follow. For example, we can see that ss.SIS.infect() takes the most time in ss.SIS.step(), so let’s profile that:

prof = sim.profile(follow=ss.SIS.infect, plot=False)
prof.disp()
Initializing sim with 10000 agents

Profiling 1 function(s):

 <function Infection.infect at 0x7f9c9deb3ab0> 




  Running 2000.01.01 ( 0/21) (0.00 s)  ———————————————————— 5%


  Running 2010.01.01 (10/21) (0.12 s)  ••••••••••—————————— 52%


  Running 2020.01.01 (20/21) (0.24 s)  •••••••••••••••••••• 100%



Elapsed time: 0.271 s





————————————————————————————————————————————————

Profile of diseases.py:None: 0.1243 s (45.7883%)

————————————————————————————————————————————————



Total time: 0.1243 s

File: /home/runner/work/starsim/starsim/starsim/diseases.py

Function: Infection.infect at line 230



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   230                                               def infect(self):

   231                                                   """ Determine who gets infected on this timestep via transmission on the network """

   232        21      31709.0   1510.0      0.0          new_cases = []

   233        21      22050.0   1050.0      0.0          sources = []

   234        21      22402.0   1066.8      0.0          networks = []

   235        21     855040.0  40716.2      0.7          betamap = self.validate_beta()

   236                                           

   237        21    1856747.0  88416.5      1.5          rel_trans = self.rel_trans.asnew(self.infectious * self.rel_trans)

   238        21    1297277.0  61775.1      1.0          rel_sus   = self.rel_sus.asnew(self.susceptible * self.rel_sus)

   239                                           

   240        42     220737.0   5255.6      0.2          for i, (nkey,route) in enumerate(self.sim.networks.items()):

   241        21      62685.0   2985.0      0.1              nk = ss.standardize_netkey(nkey)

   242                                           

   243                                                       # Main use case: networks

   244        21      31588.0   1504.2      0.0              if isinstance(route, ss.Network):

   245        21     337970.0  16093.8      0.3                  if len(route): # Skip networks with no edges

   246        21      20689.0    985.2      0.0                      edges = route.edges

   247        21     406292.0  19347.2      0.3                      p1p2b0 = [edges.p1, edges.p2, betamap[nk][0]] # Person 1, person 2, beta 0

   248        21     382566.0  18217.4      0.3                      p2p1b1 = [edges.p2, edges.p1, betamap[nk][1]] # Person 2, person 1, beta 1

   249        63     111924.0   1776.6      0.1                      for src, trg, beta in [p1p2b0, p2p1b1]:

   250        42     129102.0   3073.9      0.1                          if beta: # Skip networks with no transmission

   251        42    1709489.0  40702.1      1.4                              disease_beta = beta.to_prob(self.t.dt) if isinstance(beta, ss.Rate) else beta

   252        42    2157692.0  51373.6      1.7                              beta_per_dt = route.net_beta(disease_beta=disease_beta, disease=self) # Compute beta for this network and timestep

   253        42   92639053.0 2.21e+06     74.5                              randvals = self.trans_rng.rvs(src, trg) # Generate a new random number based on the two other random numbers

   254        42      89998.0   2142.8      0.1                              args = (src, trg, rel_trans, rel_sus, beta_per_dt, randvals) # Set up the arguments to calculate transmission

   255        42   18670956.0 444546.6     15.0                              target_uids, source_uids = self.compute_transmission(*args) # Actually calculate it

   256        42      65952.0   1570.3      0.1                              new_cases.append(target_uids)

   257        42      42895.0   1021.3      0.0                              sources.append(source_uids)

   258        42     609887.0  14521.1      0.5                              networks.append(np.full(len(target_uids), dtype=ss_int, fill_value=i))

   259                                           

   260                                                       # Handle everything else: mixing pools, environmental transmission, etc.

   261                                                       elif isinstance(route, ss.Route):

   262                                                           # Mixing pools are unidirectional, only use the first beta value

   263                                                           disease_beta = betamap[nk][0].to_prob(self.t.dt) if isinstance(betamap[nk][0], ss.Rate) else betamap[nk][0]

   264                                                           target_uids = route.compute_transmission(rel_sus, rel_trans, disease_beta, disease=self)

   265                                                           new_cases.append(target_uids)

   266                                                           sources.append(np.full(len(target_uids), dtype=ss_float, fill_value=np.nan))

   267                                                           networks.append(np.full(len(target_uids), dtype=ss_int, fill_value=i))

   268                                                       else:

   269                                                           errormsg = f'Cannot compute transmission via route {type(route)}; please subclass ss.Route and define a compute_transmission() method'

   270                                                           raise TypeError(errormsg)

   271                                           

   272                                                   # Finalize

   273        21      29319.0   1396.1      0.0          if len(new_cases) and len(sources):

   274        21     346548.0  16502.3      0.3              new_cases = ss.uids.cat(new_cases)

   275        21    1719220.0  81867.6      1.4              new_cases, inds = new_cases.unique(return_index=True)

   276        21     257645.0  12268.8      0.2              sources = ss.uids.cat(sources)[inds]

   277        21     145926.0   6948.9      0.1              networks = np.concatenate(networks)[inds]

   278                                                   else:

   279                                                       new_cases = ss.uids()

   280                                                       sources = ss.uids()

   281                                                       networks = np.empty(0, dtype=ss_int)

   282                                           

   283        21      26449.0   1259.5      0.0          return new_cases, sources, networks







————————————————————————————————————————————————

Profile of diseases.py:None: 0.1243 s (45.7883%)

————————————————————————————————————————————————



Total time: 0.1243 s

File: /home/runner/work/starsim/starsim/starsim/diseases.py

Function: Infection.infect at line 230



Line #      Hits         Time  Per Hit   % Time  Line Contents

==============================================================

   230                                               def infect(self):

   231                                                   """ Determine who gets infected on this timestep via transmission on the network """

   232        21      31709.0   1510.0      0.0          new_cases = []

   233        21      22050.0   1050.0      0.0          sources = []

   234        21      22402.0   1066.8      0.0          networks = []

   235        21     855040.0  40716.2      0.7          betamap = self.validate_beta()

   236                                           

   237        21    1856747.0  88416.5      1.5          rel_trans = self.rel_trans.asnew(self.infectious * self.rel_trans)

   238        21    1297277.0  61775.1      1.0          rel_sus   = self.rel_sus.asnew(self.susceptible * self.rel_sus)

   239                                           

   240        42     220737.0   5255.6      0.2          for i, (nkey,route) in enumerate(self.sim.networks.items()):

   241        21      62685.0   2985.0      0.1              nk = ss.standardize_netkey(nkey)

   242                                           

   243                                                       # Main use case: networks

   244        21      31588.0   1504.2      0.0              if isinstance(route, ss.Network):

   245        21     337970.0  16093.8      0.3                  if len(route): # Skip networks with no edges

   246        21      20689.0    985.2      0.0                      edges = route.edges

   247        21     406292.0  19347.2      0.3                      p1p2b0 = [edges.p1, edges.p2, betamap[nk][0]] # Person 1, person 2, beta 0

   248        21     382566.0  18217.4      0.3                      p2p1b1 = [edges.p2, edges.p1, betamap[nk][1]] # Person 2, person 1, beta 1

   249        63     111924.0   1776.6      0.1                      for src, trg, beta in [p1p2b0, p2p1b1]:

   250        42     129102.0   3073.9      0.1                          if beta: # Skip networks with no transmission

   251        42    1709489.0  40702.1      1.4                              disease_beta = beta.to_prob(self.t.dt) if isinstance(beta, ss.Rate) else beta

   252        42    2157692.0  51373.6      1.7                              beta_per_dt = route.net_beta(disease_beta=disease_beta, disease=self) # Compute beta for this network and timestep

   253        42   92639053.0 2.21e+06     74.5                              randvals = self.trans_rng.rvs(src, trg) # Generate a new random number based on the two other random numbers

   254        42      89998.0   2142.8      0.1                              args = (src, trg, rel_trans, rel_sus, beta_per_dt, randvals) # Set up the arguments to calculate transmission

   255        42   18670956.0 444546.6     15.0                              target_uids, source_uids = self.compute_transmission(*args) # Actually calculate it

   256        42      65952.0   1570.3      0.1                              new_cases.append(target_uids)

   257        42      42895.0   1021.3      0.0                              sources.append(source_uids)

   258        42     609887.0  14521.1      0.5                              networks.append(np.full(len(target_uids), dtype=ss_int, fill_value=i))

   259                                           

   260                                                       # Handle everything else: mixing pools, environmental transmission, etc.

   261                                                       elif isinstance(route, ss.Route):

   262                                                           # Mixing pools are unidirectional, only use the first beta value

   263                                                           disease_beta = betamap[nk][0].to_prob(self.t.dt) if isinstance(betamap[nk][0], ss.Rate) else betamap[nk][0]

   264                                                           target_uids = route.compute_transmission(rel_sus, rel_trans, disease_beta, disease=self)

   265                                                           new_cases.append(target_uids)

   266                                                           sources.append(np.full(len(target_uids), dtype=ss_float, fill_value=np.nan))

   267                                                           networks.append(np.full(len(target_uids), dtype=ss_int, fill_value=i))

   268                                                       else:

   269                                                           errormsg = f'Cannot compute transmission via route {type(route)}; please subclass ss.Route and define a compute_transmission() method'

   270                                                           raise TypeError(errormsg)

   271                                           

   272                                                   # Finalize

   273        21      29319.0   1396.1      0.0          if len(new_cases) and len(sources):

   274        21     346548.0  16502.3      0.3              new_cases = ss.uids.cat(new_cases)

   275        21    1719220.0  81867.6      1.4              new_cases, inds = new_cases.unique(return_index=True)

   276        21     257645.0  12268.8      0.2              sources = ss.uids.cat(sources)[inds]

   277        21     145926.0   6948.9      0.1              networks = np.concatenate(networks)[inds]

   278                                                   else:

   279                                                       new_cases = ss.uids()

   280                                                       sources = ss.uids()

   281                                                       networks = np.empty(0, dtype=ss_int)

   282                                           

   283        21      26449.0   1259.5      0.0          return new_cases, sources, networks


(Note: you can only follow functions that are called as part of sim.run() this way. To follow other functions, such as those run by sim.init(), you can use sc.profile() directly.)

Debugging

When figuring out what your sim is doing – whether it’s doing something it shouldn’t be, or not doing something it should – sim.loop is your friend. It shows everything that will happen in the sim, and in what order:

import starsim as ss

sim = ss.Sim(
    start = 2000,
    stop = 2002,
    diseases = 'sis',
    networks = 'random',
    verbose = 0,
)
sim.run()
sim.loop.df.disp()
# %%
    time  ti  func_order                     label     module       func_name    cpu_time
0   2000   0           0            sim.start_step        sim      start_step  9.8815e-04
1   2000   0           1      randomnet.start_step  randomnet      start_step  3.1081e-04
2   2000   0           2            sis.start_step        sis      start_step  4.7713e-04
3   2000   0           3            sis.step_state        sis      step_state  2.6457e-04
4   2000   0           4            randomnet.step  randomnet            step  2.8051e-03
5   2000   0           5                  sis.step        sis            step  6.7377e-03
6   2000   0           6           people.step_die     people        step_die  1.5584e-04
7   2000   0           7     people.update_results     people  update_results  2.2035e-04
8   2000   0           8  randomnet.update_results  randomnet  update_results  3.2420e-05
9   2000   0           9        sis.update_results        sis  update_results  2.3994e-04
10  2000   0          10     randomnet.finish_step  randomnet     finish_step  1.4356e-05
11  2000   0          11           sis.finish_step        sis     finish_step  9.5980e-06
12  2000   0          12        people.finish_step     people     finish_step  7.3388e-05
13  2000   0          13           sim.finish_step        sim     finish_step  9.3470e-06
14  2001   1           0            sim.start_step        sim      start_step  2.2675e-04
15  2001   1           1      randomnet.start_step  randomnet      start_step  2.9904e-04
16  2001   1           2            sis.start_step        sis      start_step  4.4194e-04
17  2001   1           3            sis.step_state        sis      step_state  2.3033e-04
18  2001   1           4            randomnet.step  randomnet            step  2.9937e-03
19  2001   1           5                  sis.step        sis            step  6.4564e-03
20  2001   1           6           people.step_die     people        step_die  1.3179e-04
21  2001   1           7     people.update_results     people  update_results  2.1390e-04
22  2001   1           8  randomnet.update_results  randomnet  update_results  3.0657e-05
23  2001   1           9        sis.update_results        sis  update_results  2.2727e-04
24  2001   1          10     randomnet.finish_step  randomnet     finish_step  1.4588e-05
25  2001   1          11           sis.finish_step        sis     finish_step  1.0029e-05
26  2001   1          12        people.finish_step     people     finish_step  9.6480e-05
27  2001   1          13           sim.finish_step        sim     finish_step  9.4680e-06
28  2002   2           0            sim.start_step        sim      start_step  2.3354e-04
29  2002   2           1      randomnet.start_step  randomnet      start_step  2.8174e-04
30  2002   2           2            sis.start_step        sis      start_step  4.6603e-04
31  2002   2           3            sis.step_state        sis      step_state  2.3966e-04
32  2002   2           4            randomnet.step  randomnet            step  2.8973e-03
33  2002   2           5                  sis.step        sis            step  6.5357e-03
34  2002   2           6           people.step_die     people        step_die  1.3308e-04
35  2002   2           7     people.update_results     people  update_results  2.3525e-04
36  2002   2           8  randomnet.update_results  randomnet  update_results  3.1810e-05
37  2002   2           9        sis.update_results        sis  update_results  2.1657e-04
38  2002   2          10     randomnet.finish_step  randomnet     finish_step  1.3856e-05
39  2002   2          11           sis.finish_step        sis     finish_step  9.6280e-06
40  2002   2          12        people.finish_step     people     finish_step  7.2997e-05
41  2002   2          13           sim.finish_step        sim     finish_step  9.5380e-06

As you can see, it’s a lot – this is only three timesteps and two modules, and it’s already 41 steps.

The typical way to do debugging is to insert breakpoints or print statements into your modules for custom debugging (e.g., to print a value), or to use analyzers for heavier-lift debugging. Starsim also lets you manually modify the loop by inserting “probes” or other arbitrary functions. For example, if you wanted to check the population size after each time the People object is updated:

def check_pop_size(sim):
    print(f'Population size is {len(sim.people)}')

sim = ss.Sim(diseases='sir', networks='random', demographics=True, dur=10)
sim.init()
sim.loop.insert(check_pop_size, label='people.finish_step')
sim.run()
Initializing sim with 10000 agents
  Running 2000.01.01 ( 0/11) (0.00 s)  •——————————————————— 9%
Population size is 10191
Population size is 10264
Population size is 10357
Population size is 10447
Population size is 10557
Population size is 10664
Population size is 10739
Population size is 10817
Population size is 10917
Population size is 11033
  Running 2010.01.01 (10/11) (0.18 s)  •••••••••••••••••••• 100%

Population size is 11124
Sim(n=10000; 2000—2010; demographics=births, deaths; networks=randomnet; diseases=sir)

In this case, you get the same output as using an analyzer:

def check_pop_size(sim):
    print(f'Population size is {len(sim.people)}')

sim = ss.Sim(diseases='sir', networks='random', demographics=True, dur=10, analyzers=check_pop_size)
sim.run()
Initializing sim with 10000 agents
  Running 2000.01.01 ( 0/11) (0.00 s)  •——————————————————— 9%
Population size is 10191
Population size is 10264
Population size is 10357
Population size is 10447
Population size is 10557
Population size is 10664
Population size is 10739
Population size is 10817
Population size is 10917
Population size is 11033
  Running 2010.01.01 (10/11) (0.18 s)  •••••••••••••••••••• 100%

Population size is 11124
Sim(n=10000; 2000—2010; demographics=births, deaths; networks=randomnet; diseases=sir; analyzers=check_pop_size)

However, inserting functions directly in the loop gives you more control over their exact placement, whereas analyzers are always executed last in the timestep.

The loop also has methods for visualizing itself. You can get a simple representation of the loop with loop.plot():

sim.loop.plot()
Figure(672x480)

Or a slightly more detailed one with loop.plot_step_order():

sim.loop.plot_step_order()
Figure(672x480)

This is especially useful if your simulation has modules with different timesteps, e.g.:

sis = ss.SIS(dt=0.1)
net = ss.RandomNet(dt=0.5)
births = ss.Births(dt=1)
sim = ss.Sim(dt=0.1, dur=5, diseases=sis, networks=net, demographics=births)
sim.init()
sim.loop.plot_step_order()
Initializing sim with 10000 agents
Figure(672x480)

(Note: this is a 3D plot, so it helps if you can plot it in a separate window interactively to be able to move it around, rather than just in a notebook.)