parameters
parameters
Set parameters
Classes
Name | Description |
---|---|
Pars | Dict-like container of parameters |
SimPars | Create the parameters for the simulation. Typically, this function is used |
Pars
self, pars=None, **kwargs) parameters.Pars(
Dict-like container of parameters
Acts like an sc.objdict()
, except that adding new keys are disallowed by default, and auto-updates known types.
Methods
Name | Description |
---|---|
check_key_mismatch | Check whether additional keys are being added to the dictionary |
dict_update | Redefine default dict.update(), since overwritten in this class; should not usually be used |
to_json | Convert to JSON representation |
update | Update internal dict with new pars. |
check_key_mismatch
parameters.Pars.check_key_mismatch(pars)
Check whether additional keys are being added to the dictionary
dict_update
*args, **kwargs) parameters.Pars.dict_update(
Redefine default dict.update(), since overwritten in this class; should not usually be used
to_json
**kwargs) parameters.Pars.to_json(
Convert to JSON representation
update
=None, create=False, **kwargs) parameters.Pars.update(pars
Update internal dict with new pars.
Parameters
Name | Type | Description | Default |
---|---|---|---|
pars | dict | the parameters to update (if None, do nothing) | None |
create | bool | if create is False, then raise a KeyNotFoundError if the key does not already exist | False |
kwargs | dict | merged with pars | {} |
SimPars
self, pars=None, create=True, **kwargs) parameters.SimPars(
Create the parameters for the simulation. Typically, this function is used internally rather than called by the user; e.g. typical use would be to do sim = ss.Sim() and then inspect sim.pars, rather than calling this function directly.
Parameters
Name | Type | Description | Default |
---|---|---|---|
label | str | The name of the simulation | required |
n_agents | int / float | The number of agents to run (default 10,000) | required |
total_pop | int / float | If provided, scale the agents to this effective population size | required |
pop_scale | float | If provided, use this agent-to-population scale factor (total_pop = n_agents*pop_scale) | required |
unit | str | The time unit for the simulation (default ‘year’; other choices are ‘day’, ‘week’, ‘month’) | required |
start | float / str / date | The starting date for the simulation (default 2000); can be a year or date | required |
stop | float / str / date | If provided, the ending date for the simulation (if not provided, calculate from “dur”) | required |
dur | int | How many timesteps to simulate, if “stop” is not provided (default 50) | required |
dt | float | The timestep, in units of “unit” (default 1.0) | required |
rand_seed | int | The overall random seed for the simulation (used to set module-specific random seeds) | required |
birth_rate | float | If provided, include births with this rate (per 1000 people per year) | required |
death_rate | float | If provided, include deaths with this rate (per 1000 people per year) | required |
use_aging | bool | Specify whether agents age (by default, agents age if and only if births and/or deaths are included) | required |
people | People | If provided, use a pre-existing People object rather than creating one (in which case n_agents will be ignored) | required |
networks | str / list / Module | The network module(s); can be a string, single module (i.e. Network), or list | required |
demographics | str / list / Module | As above | required |
diseases | str / list / Module | As above | required |
connectors | str / list / Module | As above | required |
interventions | str / list / Module | As above | required |
analyzers | str / list / Module | As above | required |
verbose | float | How much detail to print (1 = every timestep, 0.1 = every 10 timesteps, etc.) | required |
Methods
Name | Description |
---|---|
convert_modules | Convert different types of representations for modules into a |
is_default | Check if the provided value matches the default |
validate | Call parameter validation methods |
validate_agents | Check that n_agents is supplied and convert to an integer |
validate_demographics | Validate demographics-related input parameters |
validate_modules | Validate modules passed in pars |
validate_networks | Validate networks |
validate_sim_pars | Validate each of the parameter values |
validate_total_pop | Ensure one but not both of total_pop and pop_scale are defined |
validate_verbose | Validate verbosity |
convert_modules
parameters.SimPars.convert_modules()
Convert different types of representations for modules into a standardized object representation that can be parsed and used by a Sim object
is_default
parameters.SimPars.is_default(key)
Check if the provided value matches the default
validate
parameters.SimPars.validate()
Call parameter validation methods
validate_agents
parameters.SimPars.validate_agents()
Check that n_agents is supplied and convert to an integer
validate_demographics
parameters.SimPars.validate_demographics()
Validate demographics-related input parameters
validate_modules
parameters.SimPars.validate_modules()
Validate modules passed in pars
validate_networks
parameters.SimPars.validate_networks()
Validate networks
validate_sim_pars
parameters.SimPars.validate_sim_pars()
Validate each of the parameter values
validate_total_pop
parameters.SimPars.validate_total_pop()
Ensure one but not both of total_pop and pop_scale are defined
validate_verbose
parameters.SimPars.validate_verbose()
Validate verbosity